Circuit Compilers with O(1/\log (n)) Leakage Rate

نویسندگان

  • Marcin Andrychowicz
  • Stefan Dziembowski
  • Sebastian Faust
چکیده

The goal of leakage-resilient cryptography is to construct cryptographic algorithms that are secure even if the devices on which they are implemented leak information to the adversary. One of the main parameters for designing leakage resilient constructions is the leakage rate, i.e., a proportion between the amount of leaked information and the complexity of the computation carried out by the construction. We focus on the so-called circuit compilers, which is an important tool for transforming any cryptographic algorithm (represented as a circuit) into one that is secure against the leakage attack. Our model is the “probing attack” where the adversary learns the values on some (chosen by him) wires of the circuit. Our results can be summarized as follows. First, we construct circuit compilers with perfect security and leakage rate O(1/ log(n)), where n denotes the security parameter (previously known constructions achieved rate O(1/n)). Moreover, for the circuits that have only affine gates we obtain a construction with a constant leakage rate. In particular, our techniques can be used to obtain constant-rate leakage-resilient schemes for refreshing an encoded secret (previously known schemes could tolerate leakage rates O(1/n)). We also show that our main construction is secure against constant-rate leakage in the random probing leakage model, where the leaking wires are chosen randomly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asynchronous Parallel Preex Computation

The preex problem is to compute all the products x 1 x 2 x k , for 1 k n, where is an associative binary operation. We start with an asynchronous circuit to solve this problem with O(log n) latency and O(n log n) circuit size, with O(n)-operations in the circuit. Our contributions are: (i) A modiication to the circuit that improves its average-case latency from O(log n) to O(log log n) time; an...

متن کامل

Tamper-Proof Circuits: How to Trade Leakage for Tamper-Resilience

Tampering attacks are cryptanalytic attacks on the implementation of cryptographic algorithms (e.g., smart cards), where an adversary introduces faults with the hope that the tampered device will reveal secret information. Inspired by the work of Ishai et al. [Eurocrypt’06], we propose a compiler that transforms any circuit into a new circuit with the same functionality, but which is resilient ...

متن کامل

Improved Construction of Negation-limited Circuits

A theorem of Markov states that any system of boolean functions on n variables may be computed by a boolean circuit containing at most dlog2(n + 1)e negation gates. We call such a circuit negation-limited . A circuit with inputs x1; : : : ; xn and outputs :x1; : : : ;:xn is called an inverter . Fischer has constructed negation-limited inverters of size O(n2 log n) and depth O(log n). Recently, ...

متن کامل

Improved Monotone Circuit Depth Upper Bound for Directed Graph Reachability

We prove that the directed graph reachability problem (transitive closure) can be solved by monotone fan-in 2 boolean circuits of depth (1/2+o(1))(log n)^2, where n is the number of nodes. This improves the previous known upper bound (1+o(1))(log n)^2. The proof is non-constructive, but we give a constructive proof of the upper bound (7/8+o(1))(log n)^2.

متن کامل

The Adversarial Noise Threshold for Distributed Protocols

We consider the problem of implementing distributed protocols, despite adversarial channel errors, on synchronous-messaging networks with arbitrary topology. In our first result we show that any n-party T -round protocol on an undirected communication network G can be compiled into a robust simulation protocol on a sparse (O(n) edges) subnetwork so that the simulation tolerates an adversarial e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016